48 research outputs found

    Beyond the Minimal Top Partner Decay

    Full text link
    Light top partners are the prime sign of naturalness in composite Higgs models. We explore here the possibility of non-standard top partner phenomenology. We show that even in the simplest extension of the minimal composite Higgs model, featuring an extra singlet pseudo Nambu-Goldstone boson, the branching ratios of the top partners into standard channels can be significantly altered, with no substantial change in the generated Higgs potential. Together with the variety of possible final states from the decay of the pseudo-scalar singlet, this motivates more extensive analyses in the search for the top partners.Comment: 30 pages, 6 figures, JHEP versio

    Top Quark Compositeness: Feasibility and Implications

    Full text link
    In models of electroweak symmetry breaking in which the SM fermions get their masses by mixing with composite states, it is natural to expect the top quark to show properties of compositeness. We study the phenomenological viability of having a mostly composite top. The strongest constraints are shown to mainly come from one-loop contributions to the T-parameter. Nevertheless, the presence of light custodial partners weakens these bounds, allowing in certain cases for a high degree of top compositeness. We find regions in the parameter space in which the T-parameter receives moderate positive contributions, favoring the electroweak fit of this type of models. We also study the implications of having a composite top at the LHC, focusing on the process pp-> t\bar t t\bar t (b\bar b) whose cross-section is enhanced at high-energies.Comment: 26 pages, 11 figure

    Composite Higgses

    Get PDF
    We present an overview of composite Higgs models in light of the discovery of the Higgs boson. The small value of the physical Higgs mass suggests that the Higgs quartic is likely loop generated, thus models with tree-level quartics will generically be more tuned. We classify the various models (including bona fide composite Higgs, little Higgs, holographic composite Higgs, twin Higgs and dilatonic Higgs) based on their predictions for the Higgs potential, review the basic ingredients of each of them, and quantify the amount of tuning needed, which is not negligible in any model. We explain the main ideas for generating flavor structure and the main mechanisms for protecting against large flavor violating effects, and present a summary of the various coset models that can result in realistic pseudo-Goldstone Higgses. We review the current experimental status of such models by discussing the electroweak precision, flavor and direct search bounds, and comment on UV completions and on ways to incorporate dark matter.Comment: 58 Pages, 5 Figures, 5 Tables. Invited review article accepted for publication in The European Physical Journal

    Inflation from Broken Scale Invariance

    Full text link
    We construct a model of inflation based on a low-energy effective theory of spontaneously broken global scale invariance. This provides a shift symmetry that protects the inflaton potential from quantum corrections. Since the underlying scale invariance is non-compact, arbitrarily large inflaton field displacements are readily allowed in the low-energy effective theory. A weak breaking of scale invariance by almost marginal operators provides a non-trivial inflaton minimum, which sets and stabilizes the final low-energy value of the Planck scale. The underlying scale invariance ensures that the slow-roll approximation remains valid over large inflaton displacements, and yields a scale invariant spectrum of perturbations as required by the CMB observations.Comment: 18 pages, 3 figure

    Hypercharged Naturalness

    Full text link
    We present an exceptional twin-Higgs model with the minimal symmetry structure for an exact implementation of twin parity along with custodial symmetry. Twin particles are mirrors of the Standard Model yet they carry hypercharge, while the photon is identified with its twin. We thoroughly explore the phenomenological signatures of hypercharged naturalness: long-lived charged particles, a colorless twin top with electric charge 2/32/3 that once pair-produced, bounds via twin-color interactions and can annihilate to dileptons or a Higgs plus a photon or a ZZ, and glueballs produced from Higgs decays and twin-quarkonium annihilation that either decay displaced, or are stable on collider scales and eventually decay to diphotons. Prospects for detection of these signatures are also discussed.Comment: 37 pages, 7 figure

    Strong tW Scattering at the LHC

    Full text link
    Deviations of the top electroweak couplings from their Standard Model values imply that certain amplitudes for the scattering of third generation fermions and longitudinally polarized vector bosons or Higgses diverge quadratically with momenta. This high-energy growth is a genuine signal of models where the top quark is strongly coupled to the sector responsible for electroweak symmetry breaking. We propose to profit from the high energies accessible at the LHC to enhance the sensitivity to non-standard top-ZZ couplings, which are currently very weakly constrained. To demonstrate the effectiveness of the approach, we perform a detailed analysis of tW→tWtW \to tW scattering, which can be probed at the LHC via pp→ttˉWjpp\to t\bar{t}Wj. By recasting a CMS analysis at 8 TeV, we derive the strongest direct bounds to date on the ZttZtt couplings. We also design a dedicated search at 13 TeV that exploits the distinctive features of the ttˉWjt\bar{t}Wj signal. Finally, we present other scattering processes in the same class that could provide further tests of the top-Higgs sector.Comment: 37 pages, 10 figures; v2: minor improvements in the discussion, references added. Matches version published in JHE

    Cosmological and Astrophysical Probes of Vacuum Energy

    Get PDF
    Vacuum energy changes during cosmological phase transitions and becomes relatively important at epochs just before phase transitions. For a viable cosmology the vacuum energy just after a phase transition must be set by the critical temperature of the next phase transition, which exposes the cosmological constant problem from a different angle. Here we propose to experimentally test the properties of vacuum energy under circumstances different from our current vacuum. One promising avenue is to consider the effect of high density phases of QCD in neutron stars. Such phases have different vacuum expectation values and a different vacuum energy from the normal phase, which can contribute an order one fraction to the mass of neutron stars. Precise observations of the mass of neutron stars can potentially yield information about the gravitational properties of vacuum energy, which can significantly affect their mass-radius relation. A more direct test of cosmic evolution of vacuum energy could be inferred from a precise observation of the primordial gravitational wave spectrum at frequencies corresponding to phase transitions. While traditional cosmology predicts steps in the spectrum determined by the number of degrees of freedom both for the QCD and electroweak phase transitions, an adjustment mechanism for vacuum energy could significantly change this. In addition, there might be other phase transitions where the effect of vacuum energy could show up as a peak in the spectrum.Comment: 28 pages, LaTeX, 7 figure

    A Higgslike Dilaton

    Full text link
    We examine the possibility that the recently discovered 125 GeV higgs like resonance actually corresponds to a dilaton: the Goldstone boson of scale invariance spontaneously broken at a scale f. Comparing to LHC data we find that a dilaton can reproduce the observed couplings of the new resonance as long as f ~ v, the weak scale. This corresponds to the dynamical assumption that only operators charged under the electroweak gauge group obtain VEVs. The more difficult task is to keep the mass of the dilaton light compared to the dynamical scale, Lambda ~ 4 pi f, of the theory. In generic, non-supersymmetric theories one would expect the dilaton mass to be similar to Lambda. The mass of the dilaton can only be lowered at the price of some percent level (or worse) tuning and/or additional dynamical assumptions: one needs to suppress the contribution of the condensate to the vacuum energy (which would lead to a large dilaton quartic coupling), and to allow only almost marginal deformations of the CFT.Comment: 30 pages, 4 figures; v2: references added, typos fixed, discussions clarified, accepted for publication in EPJ

    Probing the SM with Dijets at the LHC

    Full text link
    The LHC has started to explore the TeV energy regime, probing the SM beyond LEP and Tevatron. We show how the dijet measurements at the LHC are able to test certain sectors of the SM at an unprecedented level. We provide the best bounds on all possible four-quark interactions and translate them into limits on the compositeness scale of the quarks and gluons. We also provide constraints on extra gauge bosons, Z', W' and G', and on new interactions proposed to explain the present measurement of the forward-backward asymmetry of the top.Comment: 22 pages, 6 figures. v2: New bounds derived from the 2011 CMS dijet data se
    corecore